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Abstract Cloud feedbacks remain the largest source of uncertainty in future climate predictions.
Simulations robustly project an increase in cloud height, which is supported by some observational
evidence. However, how much of this increasing trend is due to climate warming and how much is due to
multiyear natural variability still remains unclear because of the brevity of existing observational records.
Here we estimate when the signal will become detectable at 95% confidence by existing radar technology.We
use output from a Representative Concentration Pathway 8.5 Community Earth System Model version 1
simulation in a Monte Carlo analysis to determine (1) what is the first year at which changes in the altitude
of high cloud can be confidently estimated if we continue to fly W‐band cloud radar, (2) what radar
sensitivity is required to detect those changes, and (3) at what latitude will we first detect these changes? In
Community Earth System Model version 1 a cloud radar record would be able to confidently detect upward
shifts in cloud height over 20–60°N before 2030 for a radar with a sensitivity of −15 dBZ and stable
calibration errors of ±0.25 dBZ. Furthermore, vertical resolution could be degraded to 1.6 km with little
effect on detection year. Results are more sensitive to the magnitude of calibration errors than to the
minimum detectable echo. Our earlier midlatitude detection contrasts with a previous lidar‐based analysis,
which may be due to radar detecting different parts of the clouds and our use of simulations that account for
changing geographical patterns of forced warming through time.

1. Introduction

Clouds play an important role in mediating the climate sensitivity as they both cool the Earth by reflecting
sunlight and warm the Earth by trapping heat as greenhouse gases do. In order to understand the future cli-
mate, it is critical to find clues about how clouds will change. However, the behavior of clouds in response to
increasing greenhouse gases is unclear and cloud feedbacks remain the largest source of uncertainty in pre-
dictions of future climate (e.g., Soden & Held, 2006; Zelinka et al., 2012) in global climate models.

Many changes in cloud properties are expected with a warming climate including in cloud amount, thick-
ness, height, and phase (e.g., Bony et al., 2009; Storelvmo et al., 2015; Zelinka & Hartmann, 2010). Many
of these changes, particularly those associated with cloud amount, are highly variable across the models.
A robust cloud response to climate warming predicted by climate simulations is an increase in cloud height
following a deepening of the troposphere. Increases in the height of clouds in climate simulations were first
noticed in the 1980s (e.g., Hansen et al., 1984; Wetherald & Manabe, 1988), and since then this expectation
has been supported by simulations with global climate models and cloud‐resolving models (e.g., Kuang &
Hartmann, 2007), as well as theory (Zelinka & Hartmann, 2010). Because the rise in cloud top heights is a
robust feature of climate simulations, we can make a reasonable hypothesis about when the signal will
become detectable by existing observing technology.

Difficulty in understanding cloud feedbacks is, in part, due to a lack of long and stable observation records. A
recent study (Norris et al., 2016) investigated evidence for changes using nearly 30 years of passive sensors
from the International Satellite Cloud Climatology Project (ISCCP; Rossow & Schiffer, 1999) data set and
the Extended Pathfinder Atmospheres (PATMOS‐x; Heidinger et al., 2014) data set, which are the two long-
est satellite cloud records. ISCCP relies on geostationary radiances that are intercalibrated and gap filled by
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the Advanced Very High Resolution Radiometer series, while PATMOS‐x is derived exclusively from
Advanced Very High Resolution Radiometer data, so they are not truly independent. Norris et al. (2016) con-
cluded that the altitude of the highest cloud tops increased between the 1980s and the 2000s, which they
argued cannot be mainly explained by El Niño–Southern Oscillation (ENSO) variability. As such, while
there is some observational support for the upward shift of clouds predicted by models, it remains unclear
howmuch of the increasing trend in this record is due to climate warming and howmuch is due tomultiyear
natural variability. Furthermore, cloud heights based on passive sensors are indirect measurements with
many uncertainties and are sensitive to instrument calibration drifts, which can introduce spurious trends
in retrieved cloud top altitude (Chepfer et al., 2014). This is particularly problematic for the ISCCP and
PATMOS‐x data sets, which have been stitched together from a number of individual sensors that were
not designed for climate monitoring. While the authors of studies such as Norris et al. (2016) worked
extensively to remove spurious trends from their analysis, additional observational support would substan-
tially bolster confidence in this result. Examination of stereo (geometrically derived) cloud top heights from
the Multiangle Imaging Spectro Radiometer (launched 1998) should be insensitive to calibration and show
large variations due to ENSO but no significant climate trend over 2000–2015 (Davies et al., 2017). However,
the approach used in that analysis is weighted by cloud‐free scenes and may conflate changes in cloud
amount with cloud height (Davies & Molloy, 2012) and needed corrections for changes in Sun glint angle
during the first 2 years of the mission as the Terra satellite's ascending equator crossing time was shifted
from 10:45 to 10:30 a.m. Cloud heights can change with the diurnal cycle, so care must be taken when com-
paring absolute values fromMultiangle Imaging Spectro Radiometer with those from instruments that sam-
ple at different times.

The most recent Multiangle Imaging Spectro Radiometer data also appear to show no trend in the altitude of
tropical or midlatitude high cloud that is distinguishable from ENSO (Figure S1 in the supporting
information). However, we stress that this data record spans less than 20 years and may simply be too short
to detect any climatic trend.

Active spaceborne sensors (radar and lidar) provide range‐resolved (equivalently altitude resolved) mea-
surements and therefore a much more direct determination of cloud heights than can be obtained by pas-
sive sensors. CloudSat (Stephens et al., 2008) and the Cloud‐Aerosol Lidar and Infrared Path Finder
Satellite Observation (CALIPSO; Winker et al., 2010) operated for a decade as members of the A‐Train
constellation (Stephens et al., 2002) and currently operate several kilometers underneath the A‐Train.
CALIPSO and CloudSat carry the Cloud‐Aerosol Lidar with Orthogonal Polarization and Cloud
Profiling Radar (CPR), respectively. Cloud‐Aerosol Lidar with Orthogonal Polarization is most sensitive
to small cloud droplets and ice crystals, and CPR is sensitive to both cloud size and precipitation size par-
ticles. A previous study (Chepfer et al., 2014) used a climate model with a CALIPSO simulator to examine
the capabilities of detecting changes in clouds due to climate warming. They found an unambiguous
upward shift in lidar‐detected cloud altitude in simulations when global sea surface temperatures are
increased by +4 °C. By assuming that the change is linear in global temperature and that geographically
uniform warming has the same effect as realistic warming patterns, they estimated an upward shift in
cloud heights of ~20 m/year in the tropics for a strong CO2 forcing. This suggests a lidar record of several
decades, longer than the CALIPSO lidar record that currently exists, will be necessary to detect
cloud changes.

Chepfer et al. (2014) encouraged us to investigate how the radar record begun by CloudSat could be used to
detect upward cloud shifts, since lidar and radar have different sensitivities to different parts of clouds and
can help increase understanding of cloud feedbacks from different perspectives. CALIPSO and CloudSat
both stand on their last legs. A new satellite, EarthCARE (Illingworth et al., 2015) will have both lidar
and W‐band cloud radar sensors and continue the record begun with CALIPSO and CloudSat.
EarthCARE's planned launch is in 2021, but with a short lifetime of 3 to 4 years due to fuel limitations.
Beyond EarthCARE, the spaceborne lidar and cloud radar data record is uncertain. However, the recent
Earth Science decadal survey (National Academies of Sciences, Engineering, and Medicine, 2018) recom-
mended targeted observables of Aerosols and Clouds, Convection and Precipitation with candidate instru-
ment approaches including both lidar and radar sensors that could potentially continue the active cloud
sounding data record. If an Aerosols and Clouds, Convection and Precipitation mission came to fruition it
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could conceivably extend the cloud radar data record well into the 2030s. Is this sufficient to detect the
expected upward shifts in cloud heights?

To this end, we investigate three questions in this study: (1) What is the first year at which changes in the
altitude of high cloud can be confidently estimated if we continue to fly W‐band cloud radar; (2) what radar
sensitivity, range resolution, and calibration stability are required to detect those changes; and (3) at what
latitude will we first detect these changes? To answer these questions, we use the Community Earth System
Model version 1 (CESM1; Hurrell et al., 2013) coupled to the Cloud Feedback Model Intercomparison
Project Observation Simulator Package (COSP; Bodas‐Salcedo et al., 2011). A description of the COSP
implementation in CESM1 and analysis of the cloud biases in CESM1 within a simulator framework can
be found in Kay et al. (2012). The data sets from the CESM1 COSP model simulations and CloudSat obser-
vations are described in the next section. Section 3 explains our definition of high clouds, the Monte Carlo
approach we use, and the methodologies for how to find a year where a significant trend can be detected
with consideration of potential error sources. Analysis results and interpretations are presented in
section 4. The paper concludes in section 5 with a discussion and summary of key findings.

2. Data

In general, it is difficult to compare the results based on climate model simulations and satellite observations
because of the difference between scales (model grids are ~100 km and CloudSat footprints are ~1 km) as
well as inherent differences between model variables and observed quantities. To address this issue, satellite
simulators that convert model variables into pseudosatellite observations have been developed in an attempt
to provide an apples‐to‐apples comparison between model simulations and satellite observations. Here we
use the COSP Quickbeam radar simulator (Haynes, 2007). Our observables are summarized for each month
and location in Contoured Frequency by Altitude Diagrams (CFADs). These are 2‐D histograms showing the
fraction of radar footprints that would have sufficient signal to trigger identification of a cloud, split into bins
depending on altitude and reflectivity.

The CESM1 CFADs are from Quickbeam, which simulates W‐band (94 GHz) reflectivities equivalent to
those observed by CloudSat. It is important to emphasize that there are uncertainties associated with
COSP, most importantly with regard to the issue of spatial scales. To address scale mismatch, the
COSP package makes assumptions regarding the sub–grid‐scale variability of model quantities to generate
subcolumns, which are then used as input to the satellite simulators (Hillman et al., 2018). This is an
imperfect approach, but as Hillman et al. (2018) show the primary impact of the subgrid scheme is to
broaden the reflectivity distribution and this has little impact on the vertical distribution. The reflectivity
simulations also depend on the model microphysical representation. It is possible, for example, that stron-
ger updrafts in a future climate will alter particle sizes in a way that will affect reflectivity and is not well
represented by models. This is certainly of considerable concern as regard the amount of anvil
(Hartmann, 2016), but we expect these changes will be of minor importance with regard to cloud
top metrics.

2.1. CESM1 CFAD

In order to simulate a warmer future world, we use the Representative Concentration Pathway (RCP) 8.5, a
scenario of comparatively high greenhouse gas emissions in which projected radiative forcing reaches 8.5W/
m2 at the end of the century. In this study, 90 years (2006 to 2095) of COSP radar monthly gridded CFADs in
CESM1 RCP8.5 is used to evaluate trends in the altitude of high clouds as a function of latitude and
radar sensitivity.

COSP radar monthly gridded CFAD has a vertical grid with 480‐m spacing, a horizontal 2° × 2° latitude‐
longitude grid, and reflectivity bins that are 5 dBZ wide in the range of−50 to 25 dBZ. The CFAD is sampled
at all times of day at all grid points. Examples of CESM1 COSP CFADs over 0–10°N for 2086–2095, 2006–
2015, and their difference are shown in Figure 1. Our illustrative bin selection is arbitrary, but we chose a
tropical bin because Chepfer et al. (2014) suggested the strongest cloud height response in the tropics. Our
main results are shown for all latitude bins. The solid black lines and the dotted black lines represent the
altitudes of the mean tropopause layer (TL; averaged monthly tropopauses pressure, CESM1 output
TROP_P, from 2006–2095 over 0–10°N) and the height that is 50% below TL (TL50), respectively.
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Henceforth, we define high cloud as those above TL50, which is the height that is halfway between the
surface and the tropopause. Figure 1 demonstrates that high clouds are higher in the future climate than
the present‐day climate. The upward shift in reflectivity is clearer for reflectivities <0 than >0 dBZ
because higher reflectivities (>0 dBZ) are typically associated with precipitation which complicates the
interpretation due to a variety of effects including non‐Rayleigh scattering and attenuation of the radar by
rising liquid layers.

2.2. CloudSat CFAD

Unlike the model CFAD, the CloudSat data are associated with specific spatiotemporal sampling charac-
teristics. CloudSat measures at nadir in a Sun‐synchronous orbit with an equator crossing time near
1:30 a.m./p.m. As is common with satellite data, there are uneven sampling artifacts in the CloudSat data.
Most significantly, in April 2011, CloudSat experienced a battery anomaly and had to exit the A‐Train
constellation. CloudSat spent roughly 6 months drifting away from the A‐Train while a new operations
plan was being implemented. In November 2011, CloudSat switched to “Daylight Only Operations” mode
to keep collecting cloud radar data during sunlit portions of the orbit (Nayak, 2012), and CloudSat suc-
cessfully returned to the A‐Train constellation in May 2012. Therefore, for approximately a 1‐year period
from April 2011 to May 2012 CloudSat was either out of operation or sampling an irregular part of the
diurnal cycle.

We use CloudSat 2B‐GEOPROF (Marchand et al., 2008) version R05 from 2006 to 2015 to generate
monthly CFADs on a 2° × 2° latitude‐longitude grid with a 480‐m vertical resolution and 5‐dBZ reflec-
tivity bins to be consistent with the COSP CFADs. CloudSat 2B‐GEOPROF provides a cloud mask and
radar reflectivity, and we choose cloud mask ≥20 and radar reflectivity ≥−30 dBZ as criteria to detect
hydrometers. We exclude April 2011 to April 2012 when CloudSat was either suffering a battery anomaly
or out of the A‐Train and since the remaining data of 2011 (January to March) and 2012 (May to
December) are roughly a year's data, we combine these into a single 2011–2012 entry. Since nighttime
(a.m.) data are only available until 2010, we only use CloudSat daytime (p.m.) CFADs unless
otherwise mentioned.

3. Methodologies
3.1. Definition of High Clouds and WCH

We first identify high cloud fraction as all hydrometeors above TL50, that is, 50% of the 2006–2095 average
tropopause height for each latitude. We then generate a weighted cloud height (WCH) for each
reflectivity bin:

Figure 1. Community Earth SystemModel version 1 Contoured Frequency by Altitude Diagrams for the future climate (2088–2095 mean), for the present climate
(2006–2015 mean), and the difference between them over 0–10°N. Black solid lines and dotted lines are the altitude of the tropopause layer and the height 50%
below the tropopause, respectively.
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WCH dBZð Þ ¼ ∑i;TOA
i;TL50Hi×CFAD Hi; dBZð Þ
∑i;TOA

i;TL50CFAD Hi; dBZð Þ (1)

Here Hi is the height of the ith vertical bin and CFAD (Hi, dBZ) refers to
the CFAD fraction evaluated at Hi and the selected dBZ bin. The sums
are over the bins from TL50 to the top of atmosphere (TOA), and we esti-
mate WCH at each latitude and reflectivity bin.

Instead of using the original COSP reflectivity bins, we aggregate all
reflectivities above a given dBZ. For example, hereafter the −35‐dBZ
bin means the sum of all CFADs from −35 to 25 dBZ. These accumu-
lated reflectivity bins are less sensitive to calibration uncertainty than
individual bins because, for example, a ±0.5‐dBZ calibration shift is
equivalent to 10% of a 5‐dBZ bin but is just 1.1 % of the example −20‐
dBZ accumulated bin we use for illustration, which spans −20 to
25 dBZ. These accumulated bins can be constructed for any instrument
with a minimum detectable signal greater than the labeled bin. It is
equivalent to a total detected hydrometeor fraction with reflectivity
above the bin reflectivity value, and through equation (1), we expect it
to be related to the weighted center of mass for high level clouds.
Also note that using the average WCH (a continuous variable) allows
us to detect changes smaller than the intrinsic resolution of CloudSat's
CPR (480 m).

3.2. Monte Carlo Detection of Trends With Different Calibration Error and Internal Variability
3.2.1. Generation of Monte Carlo WCH Series
Only one CESM1 simulation is available for each scenario, and detection year statistics may depend greatly
on the realization of the internal variability in this run. In order to more robustly assess the detection of
cloud height trends, we use a Monte Carlo approach and generate sets of 1,000 pseudorandom series of
WCH. We consider that the radar‐derived cloud height within each latitude, ϕ, and dBZ bin consists of
the sum of three independent terms:

WCH t;ϕ; dBZð Þ ¼ WCHF t;ϕ; dBZð Þ þ δWCHcal t;ϕ; dBZð Þ þ δWCHvar t;ϕ; dBZð Þ (2)

where WCHF is the forced climate component, δWCHcal is variation introduced by changes in radar cali-
bration, and δWCHvar is internal climate variability that is generated from a white noise process whose
standard deviation is derived from the piControl simulation for the given dBZ latitude bin. We wish to
address the question “when will spaceborne cloud radar detect upward shifts in cloud height?,” and to
build our pseudorandom series for the Monte Carlo analysis, we require estimates of the statistics required
to build each of the terms in equation (2), that is, forced, calibration and internal variability. We use CESM1
to provide WCHF and statistics of δWCHvar and the calibration variations described in section 3.2.4 for
δWCHcal.
3.2.2. Forced Component of WCH, WCHF

For every latitude‐dBZ bin we take the RCP8.5 time series of WCH and use locally weighted scatter plot
smoothing (LOWESS) with a 50‐year window, local linear regression, and standard tricube weighting
(Cleveland & Devlin, 1988). This accounts for nonlinearities in the WCH series, and the LOWESS output
is taken as the WCHF component. These nonlinearities can be seen in Figure 2, which displays the
RCP8.5 WCH time series along with the 50‐year LOWESS smooth split by latitude for a single dBZ bin.
3.2.3. Internal Variability Component of WCH, WCHvar

For every latitude‐dBZ bin we take the piControl WCH time series and calculate its standard deviation, then
use this to generate internal WCHvar from a Gaussian white noise process (Kolmogorov‐Smirnov test does
not reject normality at p < 0.05; see Figure S2). We also consider the effect of possible autocorrelation in
the time series and find no evidence that it substantively changes our results, so our main results use

Figure 2. Representative Concentration Pathway 8.5 time series ofWCH for
the −20‐dBZ accumulated bin with line colors representing each latitude.
The solid lines through each is a 50‐year locally weighted scatter plot
smoothing fit that is used as the forced component, WCHF, for generating
our Monte Carlo time series. WCH = weighted cloud height.

10.1029/2018JD030242Journal of Geophysical Research: Atmospheres

TAKAHASHI ET AL. 7274



Gaussian white noise throughout. A fuller description with detailed illustrations is in Figures S3–S7 and the
associated supplementary text.
3.2.4. Calibration Component of WCH, WCHcal

The quality of the reflectivity time series is contingent on the accuracy of calibration. In general, spaceborne
radar is relatively well calibrated using the well‐characterized reflection properties of the ocean in clear‐sky
scenes (Li et al., 2005; Tanelli et al., 2008). However, the calibration will vary in time due to drifts in radar
output power and thermal effects. Additionally, we can consider shifts in the data record related to changing
sensor characteristics over time as calibration uncertainty with a multiyear timescale. As a specific example,
EarthCAREwill have a slightly smaller footprint than CloudSat. Because the radar reflectivity is a nonlinear
function of cloud properties, the sample distribution of reflectivity from the two sensors will be
slightly different.

To investigate the effect of calibration errors on trend detection, we generate 1,000 realizations of random
normal calibration errors (E) for nine different combinations of calibration error magnitude (standard devia-
tion 0.25, 0.5, and 1.0 dBZ) and three values for the timescale of the error (1, 5, and 10 years). Figure 3 shows
an example realization for each of the nine scenarios. In an approximate sense, the yearly change case repre-
sents intramission calibration errors, and the 5 and 10 years are examples of potential effects of intermission
calibration errors. A calibration shift will cause the “hydrometeor” occurrence fractions in the CFAD to shift
right or left, so for each year we estimate the calibration‐adjusted CFAD by shifting the entire CFADs to the
right when the calibration error is positive and to the left when the error is negative and then estimate from
this the change in fractional occurrence assuming a uniform distribution of reflectivity values in each bin
(see Figure S8 for a schematic and equations).

After shifting the 90 years of CFADs for each calibration error, we generate 1,000 WCHcal,RCP(t) series for
each latitude and radar sensitivity bin then obtain a calibration only component of WCH via

δWCHcal t;ϕ; dBZð Þ ¼ WCHcal;RCP t;ϕ; dBZð Þ−WCHRCP t;ϕ; dBZð Þ (3)

This results in 1,000 sets of δWCHcal for each of the nine combinations of calibration error magnitude
(0.25, 0.50, and 1.00 dBZ) and timescale (1, 5, and 10 years), plus a case of zero‐calibration error (see
Figure S9 for an example). These are then input into equation (2) as the final component of the Monte
Carlo WCH series.

3.3. Trend Detection, Significance, and Stability

Detection of a significant trend at the 95% confidence level occurs when the WCH trend magnitude is larger
than approximately twice the standard error of the regression estimate (i.e., trend > 2σ). For our uncorre-
lated random (“white”) noise the standard error is (e.g., Santer et al., 2000)

Figure 3. One realization of time series of random errors generated by (a) every year, (b) every 5 years, and (c) every 10 years with STD of 0.25 (green lines),
0.5 (cyan lines), and 1.0 dBZ (blue lines). STD = standard deviation.
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σWN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ x tð Þ−x* tð Þð Þ2

N−2ð Þ ∑ t−tð Þ2
� �

vuut (4)

where x(t) is the WCH for year t (e.g., Figure 4a), x*(t) is the predicted WCH from the fit for year t (e.g.,
Figure 4b), N is the length of the time series, and t is the sample mean of the t values used in the regression.

In order to address when we could be confident in detecting a change in CESM1 WCH under RCP8.5, we
calculate trends and their uncertainty beginning with 2006–2015 and then repeatedly lengthen the data ser-
ies by 1 year until we reach 2006–2095. This result is a set of trend and σ values for each end year from 2015
through 2095, and our reported detection year is when the trend is greater than 2σ and all subsequent trends
are also greater than 2σ. We refer to this as significant and stable, or “climatologically significant.” This
increases the confidence of having detected a climate trend, because even in the absence of a trend we would
expect 5% of samples to show significant trends at 2σ. However, these would be temporary and linked to
aspects of internal variability such as the ENSO that affect high clouds. This is illustrated in Figure 4c where
CESM1 WCH trends >2σ always occur after 2028 over 0–10°N with a minimum detectable signal of
−20 dBZ. We therefore report 2028 as the detection year for a climatologically significant trend, even though
significance at 2σ is first seen in 2019. This trend by 2019 is not maintained and we attribute it to internal
variability based on Figure 5, where Figure 5a shows the area‐weighted global mean temperature difference
relative to 2006 (red line) and the WCH (blue line) time series, and Figure 5b shows the residual values of
each after their first 50 years are detrended. The temperature residuals (red line) increase over 2006–2019,
and the strong correlation with WCH residuals (blue line) means that natural variability around the
longer‐term trend inflates theWCH trend for this period. For this bin (i.e.,−20‐dBZ accumulated reflectivity
bin over 0–10°N), the cloud height response derived from regressing the residual WCH against ΔT
(400 ± 62 m/°K) is indistinguishable from the values calculated over the full piControl series
(423 ± 64 m/°K). Since the piControl series only contains internal variability, this supports our argument

Figure 4. A time series of CESM1 (a) CFAD fraction, together with WCHs and TL50, (b) WCH with a fitting line, and (c) WCH trends with their standard errors
(2σ). Data correspond to −20‐dBZ accumulated reflectivity bin over 0–10°N. CESM1 = Community Earth SystemModel version 1; CFAD = Contoured Frequency
by Altitude Diagram; WCH = weighted cloud height; TL50 = height 50% below the tropopause.
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that the temporary short‐term trend significance is partly due to internal variability (further evidence is in
Figures S10–S12). Our “climatologically significant” requirement of maintained significance means that
these likely El Niño‐driven cases are not mistakenly identified as a climate trend detection.

We wish to address the question “given a year, would we be 95% confident of seeing a significant and stable
trend in WCH?,” rather than “given a significant trend at a particular year, will it be stable?” The answer to
this question must address uncertainty sources including natural variability and instrumental uncertainty.
Our Monte Carlo approach described in section 3.2 allows us to test many possible realizations of internal
variability instead of limiting our results to the single CESM1 simulation.

3.4. Model Representativeness

Unlike in the model, real‐world observations are limited in space and time, which may contribute to model‐
observation discrepancies in the mean state or variability. In addition, CESM1's mean state and variability
may differ from reality. We evaluate this by comparing CESM1 and CloudSat over 2007–2015 in Figure 6.
Figure 6a shows the 2007–2015WCH time series in CESM1 and CloudSat for a particular latitude and reflec-
tivity bin. Note that themodel meanWCH is ~200m higher than the CloudSat estimate, and the trend differs
in sign between the two data sets. The difference in trend signs may be related to internal variability: the
CESM1 run shows a negative 2006–2015 trend in the NINO 3.4 region compared with the positive real‐world
trend, indicating opposite effects on WCH from a major component of internal variability (see Figure S13
and related discussion). Regarding the mean state discrepancy, we expect that most of this is a fundamental
model bias but somemay be because we usemonthly averagedmodel output and compare with near‐1:30 p.m.
CloudSat sampling. Our only diurnal information is the additional 1:30 a.m. data from CloudSat for
2007–2010, so we separately calculate WCH including am data for comparison. Figure 7 compares the time
series of CloudSat WCH during daytime only (WCHpm) and during day and night (WCHall) for one latitude
and radar sensitivity. We reiterate the importance of only using the p.m. (sunlit) data from the observational
record because of the loss of a.m. data after 2011. The WCHall series uses combined day‐night data only for
2007–2010 before switching to day‐only data. First, 2007–2010 shows that WCHpm and WCHall vary in the
same way. Thus, the CloudSat data shows that (on annual scales) the variation in WCH are due more to
large‐scale changes than to any changes in the diurnal cycle. If this remains true in the future (which seems
to us likely), then trends between constant‐time observations (meaning observation made at the same time of
day) and time‐integrated model output can be reliably compared without time sampling the model output in
the same way for the purpose of trend analysis. The discontinuity introduced by the loss of nighttime data in
2011 shifts the data, resulting in an artificial trend change and illustrating why observations must either
ensure consistent time of day sampling, or otherwise correct for any changes to diurnal sampling.

Figure 5. (a) Time series (2006 to 2095) of Community Earth SystemModel version 1WCHs (blue, left axis) and the global
mean temperature difference relative to 2006 (T − T2006; red, right axis), and (b) time series (2006 to 2055) of
residuals for the first 50 years following subtraction of a linear trend fitted toWCH (blue, left axis) and T− T2006 (red, right
axis) of the first 50‐year series. The reported r2 is between the two series. Data correspond to −20‐dBZ accumulated
reflectivity bin over 0–10°N. WCH = weighted cloud height.
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Regardless of the time and space sampling and the offset in mean WCH, the standard deviation (STD) is
similar: 0.047 km in CESM1 and 0.040 km in the CloudSat record. Figure 6b shows that the difference in
modeled and observed STDs of WCHs is small in magnitude at all latitudes and radar sensitivities. To test
for statistical significance, we bootstrapped the piControl run and found little evidence for detectable dif-
ferences between the CloudSat and CESM1 9‐year standard deviations (see Figure S14 and associated
text). Our analysis proceeds using the CESM1 variability, with the caveat that the results are only valid
for CESM1 and that conclusions could therefore be sensitive to biases in the simulated trends and
internal variability.

We have already reported that within CESM1, WCH varies with global temperature, so we also convert our
detection years into the amount of global warming that occurs by detection. We fit a 50‐year LOWESS
smooth to the global temperature series and subtract the 2006 fit temperature from the detection year tem-

perature to give an amount of post‐2006 warming associated with WCH
trend detection. Table 1 shows forced warming levels at the beginning
of each decade and these can be applied, for example, to Figure 4c where
the detection year (2028) corresponds to 0.81 °C warming since 2006.

For context, the Berkeley Earth algorithm (Rohde et al., 2013) combined
with the HadSST3 ocean record (Kennedy et al., 2011) is the method,
which best approximates global temperature change (Richardson et al.,
2018). This data record shows approximately 1.0 °C warming from
1850–2006. Given that we estimate 0.81 °C warming from 2006 is required
to give a detection, our estimated detection corresponds to 1.8 °C warming
from 1850, which is a commonly used baseline for estimates of total
global warming.

We intend this to allow approximate inferences for detection times based
on faster or slower estimates of global warming. We highlight that the
response of WCH(T) requires future investigation and may affect the
transferability of our results, and we note that the response of WCH for
our example dBZ‐latitude bin to forced temperature changes appears to
be smaller than that for internal variability (Figure S11) and that while
the forced WCH response corresponds to global T everywhere, for short‐
term variability only tropical WCH anomalies show strong correlation
with global temperature (Figure S12).

Figure 6. (a) Time series (2007 to 2015) of CESM1WCHs (blue) and CloudSatWCHs (magenta) corresponds to the bin labeled−20 dBZ, that is, accumulated CFAD
for all reflectivities greater than −20 dBZ, and for the latitude bin 0–10°N, and (b) the difference in modeled and observed STD of WCHs (CESM1− CloudSat) over
different latitudes and accumulated dBZ bin. CESM1 = Community Earth System Model version 1; WCH = weighted cloud height; STD = standard deviation.

Figure 7. Time series (2007 to 2015) of CloudSat weighted cloud heights
during daytime only (blue) and during day and night (magenta) corre-
sponds to −20 accumulated dBZ bins over 0–10°N. Note that CloudSat only
had night data until February 2011, so the final four magenta points are
daytime only and are included to illustrate the effect of discontinuities on
trends of this length.
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3.5. Summary of Methodology

Given the complexity of our method, we provide a summary here:

1. Take the monthly CESM1 COSP output CFADs and for each dBZ bin i,
replace its value with the sum of that bin and all higher‐dBZ bins to
produce accumulated‐dBZ bin CFADs.

2. For each month and latitude calculate the WCH using equation (1)
applied to the accumulated‐dBZ CFADs, then convert these series to
annual averages.

3. Estimate the effect of calibration uncertainty on WCH by shifting the
CFADs randomly as described in section 3.2.4 (Figures S8 and S9)
and generate WCH series including calibration error.

4. For each dBZ‐latitude bin generate 1,000 Monte Carlo samples by summing forced, calibration and inter-
nal variability components as described in section 3.2.

5. For each of these 1,000 random samples, calculate the trend and its white noise uncertainty using equa-
tion (4) and report the detection year as the first year where the trend is >2σ and all subsequent years also
meet this criterion.

6. Rank the 1,000 samples and report the 950th value as the year by which we are 95% confident of detecting
a climatological trend.

7. Convert this to a forced temperature change from 2006 by fitting a 50‐year window LOWESS to the
CESM1 area‐weighted global temperature series and reporting the difference between the fit temperature
in this year and 2006 (Figure S10).

8. Report these years and temperature changes for all dBZ‐latitude bins.

We take the 0–10°N, −20 dBZ bin as an example to illustrate typical output of our Monte Carlo approach.
The histogram of the resultant detection years for δWCHcal = 0 are shown in Figure 8a. The first bin in
Figure 8a is 2016 and represents all the detections that would be achieved by looking at the data from
2006 to 2016. It thus includes some detections that would be found if we had used even a shorter period
(e.g., just 9 years of data up to 2015). On the other hand, the other bins in Figure 8a are the number of addi-
tional cases found in each additional year. For example, 2017 means cases found when using data from 2006
to 2017 but not found when using data from 2006–2016. Notice the wide variation including almost 200 out
of 1,000 detections by 2016 that maintain their statistical significance, implying that significant trends could
already be detectable in the current CloudSat record.

In general, these early detections (i.e., 2016, so 10 or fewer years) represent Monte Carlo cases where internal
variability over 2006–2016 showed a positive trend, strengthening the total WCH trend (i.e.,
internal + true > 2σ). While some of these early detections are cases in which the absence of a true trend
would have generated a temporary or false detection (i.e., internal only >2σ), this will occur only 5% of
the time. In fact, we find that about 4.5% of the 2016 cases show an early detection that is not stable (and thus

Table 1
Forced Warming Estimates in This CESM1 Run Relative to 2006

Year Forced warming since 2006 (K)

2006 0.00
2010 0.15
2020 0.51
2030 0.89
2040 1.30
2050 1.78

Note. Values are provided at each decade; annual locally weighted scatter
plot smoothing fits are used in the main calculation.

Figure 8. (a) A histogram of detection years based on 1, 000 randomly generated time series and (b) their cumulative distribution function, together with a dotted
line of 95th percentile (red) and that of detection year (green), which corresponds to −20 accumulated dBZ bins over 0–10°N.
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not identified as a climatologically robust trend in our statistics in Figure 8). In contrast, 20% of the 2016
cases are early detections that are found to be robust, which shows that the bulk of the early detections
are cases where the true trend contributed significantly to the detection. Nonetheless, this also highlights
the fundamental importance of continuing measurements after some initial detection to ensure the detec-
tion is climatologically robust, and more generally, the importance of collecting data that allow for detailed
studies on the origins of any detected trend, to ensure we understand the physical changes leading to the
observed trend and nominally to help quantify the component of the observed change that is due to internal
variability. We report the 95th percentile of this (Figure 8b) and for theWCHF and δWCHvar estimates here,
there is a 95% chance of detecting a significant WCH trend in 2028 that will then be maintained. All results
that follow will use these criteria to determine the detection year of significant and stable trends, which we
will refer to as confident detection years.

4. Results
Current Observed Trends
Here we briefly show the trends and statistical significance of the current decade‐long data record. The 2007–
2015 trends, white noise standard errors, and significance levels from CloudSat and CESM1 are shown in
Figure 9. Significant trends occur in both, but in different locations. Significant trends are seen in the tropics
for CloudSat and themiddle latitudes for the CESM1 simulation. However, due to a p< 0.05 requirement, on
average, one of the 18 latitude bins would be significant at any point in time even if there is no true trend.
Therefore, it is not surprising to see some trends based on such a short time period. In particular, Figure 5
shows a relationship between WCH and unforced temperature variability, and the positive real‐world
Nino3.4 trend over 2007–2015 favors a positive unforced real‐world WCH trend (Figure S13). This may
explain the spread of significant WCH trends across the tropics in the CloudSat record. Figure 9 indicates
that there is spatial coherence between adjacent latitudes. We investigated the cross‐correlation between
latitudes (Figure S7) and found that it is only strong for the tropics.
Predicted Detection Years From CESM1
Figure 10 shows the expected detection years in the absence of calibration error (Figure 10a), together with
the global forced temperature change relative to 2006 (Figure 10b) for each dBZ‐latitude bin's detection year.
For radar sensitivities between −35 and 5 dBZ, the year of significance tends to be in the mid‐2020s or early
2030s, except over the tropics and polar regions. Over the tropics, radar sensitivity between−20 and−10 dBZ
is needed for a confident detection in the 2030s.

When using CloudSat‐based internal variability in place of CESM, tropical detection can advance to the late
2020s for some dBZ <−15 bins, and the southern midlatitude detection is delayed by up to 5 years. However,
the finding of the earliest detection in the northern midlatitudes is robust (Figures S15 and S16).

Figure 11 shows that our radar CFAD‐based approach indicates larger trends in the tropics under RCP8.5,
but internal variability is also larger, which delays trend detection. The largest source of internal variability
in global temperature is ENSO, and the strongest response of WCH to short‐term global temperature varia-
bility is in the tropics, so we expect this tropical variation to be largely related to ENSO. The tropical trends
also tend to be larger in the−15‐dBZ accumulated bin than the lower dBZ bins. This implies that the vertical
profile of cloudmass change is nonuniform. If this−15‐dBZ bin represents vertical shifts in the within‐cloud
mass structure, cloud radar could be obtaining information which is independent of lidar, which tends to be
attenuated below approximately three cloud optical depths.

Chepfer et al. (2014) reported that lidar would detect the greatest shifts in cloud altitude in the tropics for a
fixed global warming of 4 °C. We suspect that our findings are not inconsistent with that result for several
reasons, including how tropical lidar‐detected cloud tops and radar‐derivedWCHs may differ in their forced
response and variability. The Chepfer et al. method is also not directly comparable to ours in many ways. For
example, their simulations use a spatial ΔT pattern based on quadrupling atmospheric CO2 over 140 years.
In most CMIP5 models, the warming pattern evolves (Andrews et al., 2015; Stephens et al., 2016) with tro-
pical warming generally being delayed. It is likely that the 140‐year‐long pattern of warming in Chepfer et al.
includes more tropical warming and therefore a stronger local thermodynamic effect on clouds than we
would expect from the 50–60 years from the initialization of warming in the 1970s (Cahill et al., 2015) to
detection years from 2025–2035.
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Overall, these results indicate that high sensitivity (i.e., −30 dBZ or better) is not fundamentally needed to
detect trends in cloud heights prior to 2030, given the trends and variability simulated by CESM1. Radars
that are sensitive to nonprecipitating cloud hydrometeors (<0 dBZ), associated with convective outflow
and dense cirrus clouds rather than precipitation hydrometeors (>0 dBZ) are best able to capture the
expected trends. We also find that autocorrelation in theWCHvar time series has little effect on the detection
year, with a 95% confidence interval of a 1‐year earlier to 2‐year later detection, justifying our use of a sim-
plified white noise structure (Figure S17).

Figure 9. Trends of WCHs (left column), standard errors (σ) of WCHs (middle column), and the ratio between them (right column) for CESM1 (top row) and
CloudSat (bottom row) over different dBZ bins (x axis) and latitudes (y axis) for 2007 to 2015. In the right‐hand panels the magnitude of the shading corresponds
to the statistical significance of the trend (1 ~ 66%, 2 ~ 95%). WCH = weighted cloud height; CESM1 = Community Earth System Model version 1.

Figure 10. (a) Summary of years that significant trends can be detected and (b) forced warming (right) relative to 2006 over different dBZ bins (x axis) and latitudes
(y axis) based on Community Earth System Model version 1 Contoured Frequency by Altitude Diagram.
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Figure 11. (a) Trend of WCH and (b) STD of WCH residual over different dBZ bins (x axis) and latitudes (y axis) for 2006 to 2050. WCH = weighted cloud height;
STD = standard deviation.

Figure 12. Similar to Figure 9 but with different calibration errors based on 1,000 different simulations. STD = standard deviation.

10.1029/2018JD030242Journal of Geophysical Research: Atmospheres

TAKAHASHI ET AL. 7282



Influence of Instrument Characteristics and Calibration Uncertainty
CloudSat has a true vertical bin size of 480 m, and we find that our results are not sensitive to degradation in
vertical resolution by a factor of 2 times or 3 times (Figure S18). This means that even if a measurement has
only ~1.5‐km vertical resolution, we can still detect the trend approximately as early as a measurement with
~0.5‐km vertical resolution.

We now present the various hypothetical calibration errors described in section 3.2.4, based on the 95th per-
centile of the stable detection year in our Monte Carlo simulations. Figure 12 shows the resultant detection
year estimates for a white noise δWCHvar (as in Figure 10a) with each combination of the calibration error
magnitude (0.25, 0.50, and 1.00 dBZ) and timescale (1, 5, and 10 years) as illustrated in Figure 3. Overall, the
trend detection year is more sensitive to the magnitude of the calibration accuracy than the timescale of cali-
bration uncertainty: Longer timescales cause slightly later detection, while larger calibration uncertainties
cause considerably later detection, especially for the larger dBZ bins (>−10 dBZ). For example, all radar sen-
sitivity values between−30 and 0 dBZ are able to detect extratropical changes inWCH by the late 2030s with
a calibration uncertainty of 0.25 dBZ, but a calibration uncertainty of 1‐dBZ delays the detection by several
years for smaller dBZs to more than a decade for larger dBZs.

Given that ±1 dBZ is a conservative estimate for calibration uncertainty, these results generally suggest that
pushing the radar sensitivity is not the limiting factor in detecting a significant trend. Instead, the calibration
stability is a more critical factor in determining the year of detection.

5. Summary and Discussion

This study investigates the first year at which changes in altitude of high cloud can be confidently detected if
we continue to fly W‐band cloud radar in space, based on analysis of an RCP8.5 CESM1 simulation. We also
identify what radar sensitivity is required to detect such changes before 2050 and at what latitude we first
expect such a detection. We evaluate trends in the altitude of the weighted height of high clouds in the
CESM1 CFADs as a function of latitude and radar sensitivity.

The primary detection year results we present here are based on analysis of CESM1 simulations, and care
should be taken when relating these to real‐world applications. For example, we provide estimates based
on available RCP8.5 output, a simulation of strong global warming. The largest differences relative to other
scenarios occurs later in the 21st century (Rogelj et al., 2012), and we focus on pre‐2050 detection of cloud
height changes, but if the real‐world experiences a different climate trend through the 2040s due to, for
example, volcanism or differences in transient climate response relative to the model, then the expected
detection year would shift. Also, note that this study has used a single model, which happens to have a com-
paratively high equilibrium climate sensitivity (Meehl et al., 2013). If we make the assumption that the mag-
nitude of the cloud deepening scales with the climate sensitivity, then this would imply that our results
might be skewed toward earlier detection than would be found with a lower sensitivity model. We also there-
fore provide estimates of the forced warming that have occurred by each decade in Table 1, allowing others
to infer how detection year might change under faster or slower warming. For example, our bins showing
detection by 2030 correspond to 0.9 °C global warming from 2006, although the exact relationship between
year and global warming is dependent on the internal variability magnitude and on the trend length, since
longer time periods reduce the trend uncertainty regardless of its magnitude.

Another limitation of the current study is that we do not have sufficient observational data to provide a reli-
able constraint on the magnitude of internal variability or identify which noise process is most representa-
tive. The short CloudSat time series is not detectably different from CESM1 output, but even quite
substantial differences would likely not yet be detectable due to the small sample size. A bootstrap‐based
analysis showed few latitude‐dBZ bins where the CloudSat variability magnitude was outside the 95% con-
fidence interval fromCESM1 (Figure S14), and a test using the CloudSat‐based variability showed changes of
up to ±5 years in individual bin detection years, but did not affect the conclusion of earliest detection in the
northern mid‐latitudes (Figures S15 and S16). Based on analysis of CESM1, we identified regions, particu-
larly in the tropics, where standard white noise processes are likely not applicable. However, our Monte
Carlo tests indicate that our calculated detection years on average do not change when considering an auto-
correlated noise process. We therefore believe that our analysis is robust to the most probable range of
internal variability.
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The key findings are as follows:

1. In the absence of calibration error, pre‐2050 detection occurs at some latitudes for all accumulated sen-
sitivity bins below 0 dBZ, that is, for cloud, rather than precipitation radars. Detection is delayed for lower
sensitivity (higher dBZ) and rarely occurs before 2050 for >0 dBZ.

2. If missions do not share CloudSat's orbit and overpass time, then careful accounting of differences in
mean WCH due to the diurnal cycle will be needed to remove discontinuities between satellites. For
0–10°N, the mean offset between 1:30 p.m. and combined 1:30 a.m./p.m. WCH is ~83 m, equivalent to
13 years of the climate trend. Note that the EarthCARE mission will have a 30‐min delayed equatorial
crossing time compared to CloudSat and careful analysis will be necessary to combine these data records
in a manner that accounts for diurnal sampling shifts.

3. Sampling with ~1.5‐km vertical resolution can be as useful as sampling with ~0.5‐km vertical resolution.
4. Although the largest shifts occur over the tropics, the greater magnitude of internal variability (both in

CloudSat and CESM) there means that detection is most likely to occur sooner for the midlatitudes.
5. Reduced radar calibration error generally has a bigger effect on detection year than lowering the mini-

mum detectable reflectivity.

Results suggest that a longer cloud radar record may be able to detect the expected upward shifts in cloud
heights over 20–60°S/N before 2030 for a radar with a sensitivity of −15 dBZ and stable calibration errors
of ±0.25 dBZ, under CESM1‐like global warming. For a calibration error of ±1 dBZ, detection in these areas
either requires a sensitivity closer to −25 dBZ or the extension of the record by approximately a decade and
into the 2030s.

The sensitivity and range resolution requirements we have identified could realistically be achieved by low
mass, volume, and power solid‐state radar on a small satellite bus at significantly lower cost than CloudSat or
EarthCARE radars. An example of this approach is the recent successful demonstration of the RainCube,
Radar in a Cubesat (Peral et al., 2015) Ka‐band radar. Development of a similar miniaturized W‐band radar
is ongoing. The results presented here provide systems‐level requirements on sensitivity, calibration, and
range resolution that can help guide this development. These exciting developments in the radar and space-
craft technology open the door for low cost monitoring of upward shifts in cloudiness that are one of the
more robust features of climate simulations.
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